J. Phys. Chem. A998,102,4277-4283 4277

Real-Time Control of Electronic Motion: Application to HD *
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We show that a nonstationary electron can be created in¢dresponding to partial electron transfer between

H* and D'. The electronic motion is introduced through nuclear motion, more specifically, through
nonadiabatic curve crossing, and the electronic motion is here on the same time scale as the nuclear motion.
We show that the branching ratio between the channels BT and H" + D depends on the electron
distribution (i.e., where the electron “sits”) prior to the time where the bond is broken by an infrared femtosecond
pulse. Thus, we contrelin real-time—which nucleus the electron will follow after the bond is broken.

I. Introduction tivistic molecule can be found with an arbitrary precision. It
is, accordingly, a simple system where the calculations leave
little or no room for speculations concerning the validity of
approximations. These facts makes HB good test system
for the control scheme described abdve.

When applied to HD the scheme consists of (1) the
preparation of an oscillating electron associated with a highly
excited vibrational state in the molecule (denoted by {HD
and (2) the dissociation of this nonstationary state. Thus,

The real-time monitoring and control of chemical dynamics
is at the heart of femtochemistty® To that end, a challenging
objective is to control bond breaking in polyatomic molecules
and to control electron transfer during bond breaking, that is,
to control which nuclei the (valence) electrons will follow when
a specific bond is broken.

In a previous lettérwe have discussed an explicitly time-
dependent double-pulse laser control scheme for controlling
where nuclei and electrons are going in unimolecular reactions.
The basic principle used is in the spirit of the scheme of Tannor +y, v JH+D*F

gy SR . (HD")* — (1)
and Rice3® that is, vibrational or electronic wave packets are H* 4+ D
created and controlled by time-delayed ultrashort laser pulses.
In this paper we focus on electronic motion and test the schemeand the time of the dissociation is expected to have a controlling
on the HD" molecule. The real-time control of electronic influence on the branching ratio. That is, the aim is to catch
motion has been suggested before for atoms, Krause et al. hasand freeze the oscillating electron distribution by the laser pulse
for example, considered wave packet motion of Rydberg statesthat breaks the bond.
in the hydrogen atorh. The electronic motion of Hin intense Electronic control in HD has been studied previously in a
laser fields has also been studied. time-independent framework. Sheehy ef%bnd Ghosh et

The first step in the scheme is to create a nonstationary al??? has shown the possibility of control when the relative
electron corresponding to (partial) electron transfer between intensity of two intense laser fields is varied. Charron efal.
different atoms in a molecule® The electronic motion is  has used an intense field two-color coherent control scffefie
introduced via nuclear motion, more specifically, when a to dissociate HD showing a very high degree of controllability.
vibrational wave packet moves through a nonadiabatic curve The present work should be considered as a demonstration
crossing. In an adiabatic representation, the molecular waveof a principle for real-time electronic control. The control
function has components in more than one electronic state whenscheme we apply to HDmight not offer the same high degree
the wave packet moves through the crossing region and theof controllability as the ones above, neither we shall claim that
electron is, accordingly, nonstationary. In addition, the elec- this scheme is simpler to implement. The control scheme used
tronic motion is here on the same time scale as the nuclearhere might, however, be better suited for other molecules. The
motion. The second step in the scheme is to break the chemicaimplementation on Nal is in progre3s.
bond between the atoms at an appropriate time. Thus, depend- The paper is organized as follows. In section Il we derive
ing on the electron distribution prior to the time where the bond equations of motion directly from the three particle nonrelativ-
is broken by a femtosecond pulse, we can (at least, partially) istic Schiainger equation. We separate coordinates in center
control electron transfer between the separated atoms. of mass, electronic, and nuclear coordinates taking into account

In this paper, we want to demonstrate the principle behind the different mass of the proton and deuteron. We separate out
real-time control of electronic motion in a molecule. The the rotation and is left with a one-dimensional vector equation
calculations we present here are based on simple (Gaussianjor the motion of the nuclei. In section IIl we find vibrational
pulses with an appropriate time delay, that is, no optimized eigenstates, and examine a highly excited vibrational state
pulses are invoked (see refs 7,-11B and references therein). showing a oscillating electron distribution. Finally, we show

HD™ is a simple molecule that has been studied extensively, that the use of an infrared femtosecond pulse fired at the right
experimentally as well as theoreticaly:’® The electronic time has a controlling influence on the branching ratio. To that
states as well as the non-adiabatic couplings can be foundend we vary the pulse width and frequency in order to optimize
semianalytically.>-1° and hence the properties of the nonrela- the yield and the controllability.

S1089-5639(97)03198-8 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/03/1998



4278 J. Phys. Chem. A, Vol. 102, No. 23, 1998 Gronager and Henriksen

Il. Theory I/Jtot(x, X, X) = wcm(X)wmol(Xv X) (6)

There are two different choices of the internal coordinates
once the separation from laboratory coordinates to center o
mass coordinates is done. One can use either Jacobi coordinatey
where the position of the electron is measured relative to the 3R
center of mass of the nuclei (see, for example, ref 15) or Pma(X, X) =€ Z(pj(éx, EX(X) 7
Geometric coordinates where the position of the electron is .
measured relative to the geometrical center of the nuclei (see,with £ = mamy/m(me + my) (see ref 15). Thelectronicwave

for example, ref 18). The choice of the latter introduces a mass functionsg; are chosen as solutions to #ectronicSchrainger
polarization term whereas the Jacobi coordinates hides the masgquation

polarization in the potentials and the in the nonadiabatic R

coupling. It should be noted that the two coordinate systems Heiedpj(X, X) = W(R)¢;(x, X) (8)

coincide if the nuclei are identical, for example, for; H N ) o

Further it should be noted that the choice of coordinate system, WhereR = |X|, and whereHeiec is the electronicHamiltonian

of course, by no means influence the results. We shall in this )

paper use the Jacobi coordinates. H, = e V2 + V(X, X) (9)

A. Separation of Coordinates. The separation of coordi- elec 2m X '

nates goes as follows; first we separate out the center of mas§

motion, second, focusing on the molecule in the center of mass

frame, we separate the electronic and nuclei motion, and finally

we separate the angular variables. We shall essentially follow

the general three-body derivation by Hunter et’akHowever,

we shall introduce a laser field in the Hamiltonian and further [,
) AP . X 0

we shall introduce some simplifications possible only for the

HD*-system. Where our derivation is similar to the derivation |Y [= |0 |T

of Hunter et al., we shall indeed be short and only highlight |7 aR

fWe now introduce the BoraHuang expansidf for the
olecular wave function:

n order to solve this equation we first transfomnto a
coordinate system rotating with the nuclei (i.e., wikh We
define the spherical polar coordinatesXofs R,¢,6) and rotate
and displacex according to the following transformation:

the conceptually important results. _ o .
The total nonrelativistic Hamiltonian in laboratory coordinates _COS@) cos@)) —sin(@) cosP) sin(@) ||x

within the electric dipole approximation writes: sin(g) —Cosg) 0 y| (10)
K2 K2 k2 cosg) sin(®) sin(p) sin(®) cosP) ||z

Ho = — 2 Vf, ~om Vs ~om Vg + V(rpd, Moo lge — where &y, 2) and k' v, Z) are the Cartesian coordinates»of
M My Me andx’, respectively, and wher@ = (my — mp)/(2(mg + my)) =

eE(t) - (X, T Xg = Xo) (2) 5. Now X' is centered in the geometrical center of the nuclei
- and is rotating with the bond axis.
where m denotes massx denotes position and denotes We now introduce prolate spheroidal coordinates:{ )

interparticle distance. Subindices p, d, and e denotes proton,for x' by ref 30:
deuteron, and electron respectively. is the usual Coulomb

potential of the intgrparticle disf[ances.aE(t) is the electric X = 1/2Rcosw /(uz —1a- Uz) (11a)
field. By transforming to Jacobi coordinates, we can separate
out the center of mass motion: N > >
" y = "1,Rsinwy (U — 1)(1— ) (11b)
-1 1 0
X1 1om — m % z =",Rw (110)
x|=[ M+ my mp + My Xd 3 . —_— .
X These coordinates separate the electronic Siahger equation,
My My me |[Xe :
_P _3d _® ref 31:
M M M
|
_ 9,2 Y 20 2
whereM = m, + my + m. We can hence write the total 3, (U" — 13, +|-C—p(u —1) -
Hamiltonian as the sum of a center of mass Hamiltonian:
2 2
. 2 M 2™ puly =0 (12a)
Hon = — o7 V2 — eE(t) - X 4) u"—1 Amefh
2M
iltonian: 9 9= .
and a molecular Hamiltonian: o (1- UZ) e + (C — p2(1 — UZ) — /i 2) Z=0 (12b)
A R
Hmolz__vx__vx+v(xvx)_ 2
2M 7 2m T e=0 (120)
m, ow

eE(t)-[(m—Z)x—l- J_rmdx] )
Me Mo My Where ¢j = Y, u(WE,.()Q(w) and wherep = R

with Mt = m* + my*andm = (m, + my)~t + m,;*. We v —Y,mW, and whereC is the separation constant of the two
can hence write the total wave function as a product wave coupled SturmrLiouville equations, egs 12a,b. Theequation
function: is easily solved to giv&(w) = Y,,e5#». Equations 12a,b are
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solved by introducing the infinite series expansions: D;/R=D,/R=—a(l—m/M) = -, (17a)

Y, R) = e (pu— 1))y ap“(RILY;E(2p(u — 1)) Dy /R=Dy/R=—",(1+m/M)=—", (17b)
PSS
(13a) for R— . However, this limit is valid as a good approximation
w in the range from~2 b to infinity.
2,0, R =S b"R)P!(v) (13b) An expression for the suriij + Vj can be found in the
" - extensive paper of Hunter, Gray, and PritchBrdHowever,

) . an error herein should be corrected; eq 30 should read (in the
wherel andP are associated Laguerre and Legendre polynomi- oation of Hunter et al.):

als, respectively, ref 30. Inserting egs 13a,b in egs 12a,b yields

recurrence relations fa, andb.32 Equations 12a,b are now 1 (m—23); 1

solved simultaneously, using 2D-NewtoRaphson iteration for ~ H(R); = — ZQ(R)“ 41 §1I?3[E9(R)i +E,

(C, p).323% We start the calculation at small internuclear 4R

separations using the united atom resisy 0; C ~ A(1 + 1) R KK (14 = uMdudi — }Rz K K2+ 10 +
andW ~ 22/2m? as first guesses.C( p) for R > 0 is obtained Ryl f K ( H)u 8 f K #a

using the results at small& as first guesses. 1 KK, ,
We shall only be concerned with the two lowest electronic 1) + u(q — 1)]dud — éRB f B_Rﬁ(/l — u)dudd —

states, 1sy an_d 2w,. The secon(_j excited state and up is at all 1 o [3K; 3K, 9K, 8K, ,
internuclear distances of much higher energy tharn &ad 2w, éRz f [,1(1 — 19 (ﬁ R + ﬁﬁ) +uw —1)
and can hence safely be neglected.
The 1y and 2%, correspond toy, x4, 1) equal to (1,0,0) (B_Kla_Kl + 8_K18_K|)] dudl (18)
and (2,0,1), respectively. l.e., we have that the angular du OR  du oR
momentum of the electrom = 0 and hence the total angular ) ) )
momentum is equal to the angular momentum of the nuclei.  Now for the nuclear wave functiop(R, 6, ¢), we insert in
B. Nuclear Schradinger Equation. We shall now con- the nuclear Schidinger equation, eq 14, the sum of products:
sider the nuclear Schdinger equation. We insert the Born 1 |
Huang expansion for the molecular wave function, eq 7, : _ = :
into the molecular Sctidinger equation, multiply by 4R 0. 9) R;m:_IY'm(e' 2 (19)

&%2pi(Ex, £X)yi(X) and integrate over electronic coordinates.
We obtain where Yin(0, ¢) are spherical harmonics. We multiply with
Yrm(6, ¢) and integrate ove and¢ and finally multiply byR.

ihg 11(R6,0) =[ ?11(R) ?12(R) Vi(R)  ViAR) _ We hence get the equation:
dt| x2(R.6,0) Ta(R) TAR)]  [Vau(R) VaoR) dlran(®)
Diy(R) DiAR) 11(RO.9) ih—|"" " |=
eE(t) s0 14 Votlran(®)
Dzl(R) Dzz(R) X2 (R,9,¢) ] ) |(|+1) |
where we, as stressed above, only consider tlg dsd the & PR -— —Zgi + @
2poy states (abbreviated to subscripts 1 and 2, respectively) and = K2 dr? R2 dR dR
used the orthonormality ofy;. T;(R) is the kinetic energy ——0 +
operator andV;(R) potential energy. Since we are only | 2M ) d dg @« 104D
considering transitions between states with the same electronic 9 -7 5 . 9
quantum numbery{ = 0), the off-diagonal in the potential ! \ '
energy matrix becomes independent of the rotation of the nuclei,
governed by the variablgsand¢. D;(R) is the electric dipole .
moment operator for a field in the laboratargdirection. We 5 Vi(R) ViAR) — eATE(t) D11(R) D1AR) |{ [22rm(R)
see that the only angular dependence is associated with the ™" Vai(R) V2R : D2y(R) D2oR) | [ |y2m(R)
electric dipole moment, and hence when the fie(¢t) is off,
the dimensionality of the problem reduces considerably.
The electronic dipole moment operator can be written as J (20)
me 1 m, where
D;(R) = —[a(l - M) o5 + > (1 + M) DMij(R)]R (15)
21 .
with A= [ Y0, ¢) CosOY, (6, ¢) sin6 do dp (21)
PR e el e is a tridiagonal matrix with AT, = A"}, =
DM, (R) = = (U, v, w, R )
iR="g Jo Joufi #luv.0.(R)x V(12-m?)/(412—1). g(R) andV;(R) can be found in ref 15.
€0j(U, v, @, @R)UU(UZ — Uz)dudvda) (16) In this paper we shall only consider the rotational ground

state,| = 0. For a weak field we will only have one-photon
For large internuclear separations one can obtain simpletransitions, and we will neglect the addition of one unit of
expressions for the electric dipole moments. These are foundangular momentum. Sincg;(R) dominates oveh?(l + 1)/
by inserting the asymptotic solutions for the electronic wave- (2MR?) this approximation is justified. We shall hence label
functions, namely 1s orbitals on the proton and the deuteron. the scalar states of the vibrational vector staiéR) andy2(R)
We find that DMi» = DM»; — 1 and obtain: omitting thel = 0 andm = 0 subscripts.
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We now introduce two new representations: Tiabatid
and thetrue adiabati¢ representation. In the diabatic repre-
sentation the kinetic energy matrix is diagonal and in the true HD*2poy,)
adiabatic representation the potential energy matrix is diagonal.
In the representation used so far neither the kinetic nor the
potential energy matrices are diagonal, we label this representa- | | ﬁx
tion the adiabatic representation, as it is the one we get s ] R

diagonalizing the electronic Hamiltonian. However, due to the NN n ]
inclusion of the mass polarization term in the treatment (the Ve e \
. e / / -

mass of the nuclei are not taken to be infinite), we get a small / ,
off diagonal contribution to the potential energy matrix. By = 0l o / 00 H D(1s)
diagonalization of this matrix we obtain the true adiabatic L b
representation. oo | 1 150

A transformation between any of the representations consid- -z | \ f | 2004

ered can be performed by the unitary matrix:

-5000

Energy/ 1/cm

-25000 L L y
0 5 10 15 20 25
Bond length / bohr.

cosO(R) —sin®(R)
sin®(R) cosB(R)

where®(R) is chosen to diagonalize either the kinetic or the HD*(1s0g)

potential energy matri¥* The true adiabatic representation is Figure 1. The true adiabatic potentials (solid and dashed) and the
unique, whereas the diabatic representation can be rotatedroupling (dotted) for HD (see text). Near the equilibrium bond
arbitrarily with a constan®.. We shall choose the diabatic distance, the electron is equally shared between the nuclei and the true

; ; P adiabatic and the adiabatic potential are almost identical. In the plot
representation that is asymptotic with the two product channels we have indicated this labeling of the potentials according to the

namely an electron in a 1s-orbital on either the deuteron or on ,gjahatic states. In the asymptotic region (magnified by a factor of
the proton. This corresponds #§(R) = 1/«/§[x1(R) + x2(R)] 100), the true adiabatic potential resembles the two dissociation channels
andxzD(R) = 1/\/§[X1(R) — 72(R)] WhereXJp(R) is the nuclear and is hence labeled accordingly. Note that the adiabatic well is very
wave function in the diabatic representation. With this choice, shallow and note further the imall splitting between the two dissociation
the diabatic and true adiabatic representations coincides in theChannEIS H +Dand H+ D,
asymptotic region. Further the diabatic representation gives aelectron that is on the proton vs. the deuteron. An approximation
direct measure of the magnitude of the electron density on thefor the electric dipole moments in the diabatic representation
proton/deuteron, respectively. can be calculated from egs 17a,b and eq 22. We obtain:

The Schidinger equation in the diabatic representation writes:

(22)

12/R D J/R~0 (24a)
2
20 mg
dZR]_|  r2|dR VIR VLR)| DR~ (00— ) =7 (a+ ") =" (24b)
dt D 2M 2 Vs Vs
X2 (R) a 2R VoR)
0 = DR~ (e +) — X (@ =) =~ (240)
D D D These dipole moments are valid in the range fren® b to
DR DR || |22 (R) (23) infinity. We see that a (diabatic) electronic transition governed
DR DR |[[XEMR by DY, is very unlikely; furthermore, we see that (diabatic)

vibrational transitions can occur, of course, depending on the

vibrational Franck-Condon factors. It should be noted that the
\tlevlzgtrr?c\fjl(R? and D i (R) ar? the dpotentrl]al denl;argy and the probabilities associated with laser excitation into the translational
i pole nom;n';)tre}ns orme mtolt ef 1a hatlc representa—cominuum states of the two channels, in general, are different.
tion. W? use t.e 1a at|c.rep'resentat|on or.t e computatlon Thus, the dipole moments differ by a factor of 2, and in addition,
as the phagonallty of t_he k_metlc energy matrix simplifies the the vibrational FranckCondon factors can be different (de-
evaluatlon"of_ the Hamllt_onla_m con3|deral_§Fy. . . pending on the laser frequency). These findings suggests,
. The_SchroImger equation in the true adlqbatlc representation nevertheless, that we should be able to freeze the electronic mo-
IS similar to eq.20 except that the potential energy matrix is tion in the breaking of the bond, and hence control the branch-
d|agon_al. In Figure 1 we have pIottTed the dlagonal of the ing ratio. That is, the magnitude of the electron density on the
potential energy matrix which we label,(R) andV,,(R); and proton vs deuteron before and after the bond is broken can be
furthermore, we have plotted{(R))?/2M, again the superscript ,changed (when the laser parameters are properly chosen).
“T” denotes the true adiabatic representation. We see that the  |; <hould be stressed, that in the calculations done in the

coupling term peaks around the avoided crossing at i 2 following section, we use the exact dipole moments, and not
thatV},(R) supports an adiabatic well, a very shallow one that the above approximation.
is.

We shall now examine the electric dipole moments in order lll. Results and Discussion
to clarify whether or not it is possible to freeze the electronic  In this section we shall examine the highly excited vibrational
motion in the breaking of the bond. That is, we do not want eigenstates of HDto clarify the asymmetric behaviour due to
the electron to move due to the influence of the field. To that the different mass of the proton and the deuteron. Further we
end, we consider the system in the diabatic representation; hereshall examine the possibility of controlling the dissociation into
the two states gives a direct measure of how much of the either H" + D or H + D™.
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Figure 2. Adiabatic representation of all vibrational eigenlevels, the _. I . P 3
vibrational ground state, and the 21st vibrational excited state. The Figuré 3. The oscillating electron density at times'f, '/2, and/, of
the vibration period. The electron density is defined in eq 26.

potential for the electronic ground state and the absolute square of the
corresponding part of the vibrational eigenstates are in solid and the

potential for the electronic excited state and the absolute square of the o
corresponding part of the vibrational eigenstates are dashed. Also i ﬁ
shown is the electron density for the two specific states. o

A. Vibrational Eigenstates. Forl = 0, HD* has 23 bound
vibrational eigenstates (see, for example, ref 18); the 22nd
vibrational excited state, however, is bound with only a few
cm~1. We shall hence only consider the first 22 states.

We solve the time-independent Sttirger equation in the
diabatic representation:

2 = i

d
— 0 D D
2 VIR VIAR) R
— h— R 1 1z A = Figure 4. Electron difference plot at times @, ¥, and?®/, of the

M 0 d_2 V?l(R) V|232(R) XZD,n(R) vibration period. The electron difference shows the electron transfer
as defined in the text.

X:?,n(R) We have here suppressed the coordinate dependence for the
| b (25) electronic and nuclear wave functions. In the following we shall
%24(R) do likewise where it is unambiguous.

B. Oscillating Electron. We now make a coherent super-
position of the 20st and the 21st vibrationally excited eigenstate.
’ e X h Since they both show an asymmetric electronic density, we
we propagate eq 23 witfi(t) = 0 in imaginary time’® The would expect that in this superposition the electron would
computation is performed on two 512 point grids (one for each ggcillate between the proton and the deuteron. However, the
scalar state in the vibrational vector state) with a position spacing gjectron oscillates in such a way that the probability that the
of 0.1b. By using the Chebychev propagatot®(as compared  gjectron is near the proton never exceeds 50%. The preparation
to the split propagaté?*) we avoid the transform (forward and ¢ this state could, for example, be accomplished using a series
back) between the adiabatic and the diabatic representation iny¢ infrared picosecond laser pulses, similar to the preparation

each time stef? of highly excited vibrational eigenstates by Korolkov et‘al.

_In Figure 2, we have plotted the adiabatic potentials, all — att =0 the system is prepared in the coherent superposition:
vibrational eigenvalues, the vibrational ground state, and the

wheree, is the energy eigenvalue of tiéh vibrational vector
eigenstatex}?n(R). However, instead of solving eq 25 directly,

21st vibrational excited state. The adiabatic potential for the x2(t=0) /2 e e
electronic ground state and the absolute square of the respective 5 =5 |7 o (27)
part of the vibrational eigenstates are in solid, whereas the %2(t=0) 2 X220 X221

adiabatic potential for the excited electronic state and the

absolute square of the respective part of the vibrational We now follow the dynamics of this state for an entire vibration
eigenstates are dashed. We see that the 21st vibrational excite@eriodr = 2fi/(e21 — €20) = 393 fs. We display the motion
state has a considerable contribution on both electronic statesas four snapshots at timés= 0, /4, 7/2, and 3/4. Figure 3

and is hence asymmetric. (l.e., it is more likely to find the shows the electron density as defined in eq 26, and Figure 4
electron on the deuteron than on the proton). This is more shows arelectron difference plotdefined as the last term of
evident from the electron density which is also plotted in Figure the integral in eq 265 Rep1yip2y2] dR which is responsible

2. The electron density can be found directly from the for any asymmetric effect in the electron density. Figure 5
vibrational eigenstates in the adiabatic representation, simply shows the expectation value of the internuclear separdion
by integrating out the nuclear coordinates, after transforming and the percentage of the electron density near the proton vs.

from the diabatic to the adiabatic representation: the deuteron calculated as the percentage of probability on the
diabatic surfaces. From these figures, itis clear that the electron

P(u, v) = Z j(’)” @i(u, v, Ry {(R)g;(u, v, Ry (R) dR= and the nu_clei move on the same time scale. (l.e., as the
ij512 molecule vibrates, the electron moves from the proton to the

o deuteron and back). This is a clear breakdown of the adiabatic
ﬂ) [P0 100+ P22 39202 T 2Re@1 2 19222)l AR (26) approximation and suggests that, if we could break the bond at
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Figure 6. The amount of free deuterium and hydrogen as a function
of time fort = 7/2. The frequency of the pulse is= 300 cnt’. The
dissociation takes place on picosecond scale. Note that the free
deuterium arrives in chunks indicating an oscillating wave packet in
the adiabatic well.

We propagate up to timds= 10 ps before the dissociation
is over and the amount of formed hydrogen and deuterium is
constant. For times that long we would in principle need an
enormous grid to avoid reflection from grid boundaries;
however, instead we use an absorber at the edge of the grid
and add up the flux. We have tried to perform the computation
with several standard absorbers (see, for example, ref 44, 45);
however, they are all dependent on the wave packet being not
too broad in momentum space, or otherwise they will reflect.

Figure 5. The electron population on the proton and on the deuteron The dissociating wave packet formed by the short laser pulse
together with the expectation value of the internuclear separation vs contains momenta in a large interval and hence a better absorber

the time in units of the vibration period Note that the electron and

the nuclei move on the same time scale (i.e., breakdown of the adiabatic

approximation).

the right time (without destroying the electron population on

the two nuclei), we should be able to control the branching ratio

between H + D and H+ D*. The electron density oscillates

between 38/62% and 22/78% on H/D; however, it should be
noted that, if we could make the wave packet oscillate entirely

through and free from the nonadiabatic coupling, we would
expect a theoretical limit of 50/50% to 0/100% for the electron
density on H/D.

C. Electronic Control. Assume that we at time= 0 have

prepared the molecule in the coherent superposition as define

in eq 27, we now want to dissociate the molecule from this

state using a femtosecond laser pulse. Further we want the tim
we fire the pulse to have a controlling influence on the branching

ratio. Dissociation out of highly excited vibrational eigenstates

using infrared picosecond laser pulses has been studied prev

ously see, for example, ref 41.

We start out with a Gaussian pulse with a duration (full width
at half-maximum, FWHM) oAt = 50 fs and a center frequency
wp = 300 cnTl; however, these parameters we shall later vary.
The peak intensity of the field is 160 MW crhcorresponding
to a field strength oy = 35 MV m™1. We fire the pulse so
it reaches its maximum at timeésfrom O toz. The electric
field hence takes the form:

E(t) = E, exp[—4 In 2¢t — T)7At%] cosfw,(t — 1)] (28)

The calculation is again performed on two 512 point grids with
a position spacing of 0.b, using the Lanczd3“3 algorithm
for the time evolution.

was needed. We used a newly derived absorber that automati-
cally adjusts to the actual momentum. All details about this
absorber can be found in ref 46.

In Figure 6, we have plotted the amount of free deuterium
and hydrogen as a function of time when the laser pulse peaks
att = 7/2. We see that the amount of free hydrogen becomes
constant quite fast, whereas the amount of free deuterium arrives
in chunks. This is most likely due to the adiabatic well in the
electronic excited potential. It catches some of the wave packet
and it leaks slowly to the electronic ground state potential as it
oscillates back and forth.

The amount of free deuterium and hydrogen relative to the

Cfotal yield as a function of is plotted in Figure 7a for a pulse

width of At =50 fs. We see that we get the maximum amount
of deuterium when = 0.6 7 and the smallest amount wher:

€

0.17.

If we compare the amount of deuterium from Figure 7a with
the electron population on the deuteron at given times (in Figure
5) we observe a strong correlation. The maximum/minimum
is not as high as in the bound molecule this we ascribe, partly,
to the fact that we have a finite pulse width.

The influence of the finite pulse width becomes more evident
in Figure 7b, where we have made the same calculation with
At =100 fs. Here the controllability is almost gone, since the
pulse is averaging over many electronic and nuclear configura-
tions. The overall yield is about the same fsr = 50 fs and
At = 100 fs, namely~7%.

Finally, we have changed the frequencyde = 600 cn1?!
and we observe now that the hydrogen channel is favored. This
is due to the FranckCondon factors for the (diabatic) vibra-
tional transitions; The FranekCondon factor for a H-channel
vibrational transition is bigger than that of a D-channel
vibrational transition at this frequency. Furthermore, they are
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