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We show that a nonstationary electron can be created in HD+ corresponding to partial electron transfer between
H+ and D+. The electronic motion is introduced through nuclear motion, more specifically, through
nonadiabatic curve crossing, and the electronic motion is here on the same time scale as the nuclear motion.
We show that the branching ratio between the channels H+ D+ and H+ + D depends on the electron
distribution (i.e., where the electron “sits”) prior to the time where the bond is broken by an infrared femtosecond
pulse. Thus, we controlsin real-timeswhich nucleus the electron will follow after the bond is broken.

I. Introduction

The real-time monitoring and control of chemical dynamics
is at the heart of femtochemistry.1-3 To that end, a challenging
objective is to control bond breaking in polyatomic molecules
and to control electron transfer during bond breaking, that is,
to control which nuclei the (valence) electrons will follow when
a specific bond is broken.
In a previous letter4 we have discussed an explicitly time-

dependent double-pulse laser control scheme for controlling
where nuclei and electrons are going in unimolecular reactions.
The basic principle used is in the spirit of the scheme of Tannor
and Rice,5,6 that is, vibrational or electronic wave packets are
created and controlled by time-delayed ultrashort laser pulses.
In this paper we focus on electronic motion and test the scheme
on the HD+ molecule. The real-time control of electronic
motion has been suggested before for atoms, Krause et al. has,
for example, considered wave packet motion of Rydberg states
in the hydrogen atom.7 The electronic motion of H2

+ in intense
laser fields has also been studied.8

The first step in the scheme is to create a nonstationary
electron corresponding to (partial) electron transfer between
different atoms in a molecule.4,9 The electronic motion is
introduced via nuclear motion, more specifically, when a
vibrational wave packet moves through a nonadiabatic curve
crossing. In an adiabatic representation, the molecular wave
function has components in more than one electronic state when
the wave packet moves through the crossing region and the
electron is, accordingly, nonstationary. In addition, the elec-
tronic motion is here on the same time scale as the nuclear
motion. The second step in the scheme is to break the chemical
bond between the atoms at an appropriate time. Thus, depend-
ing on the electron distribution prior to the time where the bond
is broken by a femtosecond pulse, we can (at least, partially)
control electron transfer between the separated atoms.
In this paper, we want to demonstrate the principle behind

real-time control of electronic motion in a molecule. The
calculations we present here are based on simple (Gaussian)
pulses with an appropriate time delay, that is, no optimized
pulses are invoked (see refs 7, 10-13 and references therein).
HD+ is a simple molecule that has been studied extensively,

experimentally as well as theoretically.14-19 The electronic
states as well as the non-adiabatic couplings can be found
semianalytically,15-19 and hence the properties of the nonrela-

tivistic molecule can be found with an arbitrary precision. It
is, accordingly, a simple system where the calculations leave
little or no room for speculations concerning the validity of
approximations. These facts makes HD+ a good test system
for the control scheme described above.4

When applied to HD+ the scheme consists of (1) the
preparation of an oscillating electron associated with a highly
excited vibrational state in the molecule (denoted by (HD+)*),
and (2) the dissociation of this nonstationary state. Thus,

and the time of the dissociation is expected to have a controlling
influence on the branching ratio. That is, the aim is to catch
and freeze the oscillating electron distribution by the laser pulse
that breaks the bond.
Electronic control in HD+ has been studied previously in a

time-independent framework. Sheehy et al.20 and Ghosh et
al.21,22 has shown the possibility of control when the relative
intensity of two intense laser fields is varied. Charron et al.23

has used an intense field two-color coherent control scheme24-27

to dissociate HD+ showing a very high degree of controllability.
The present work should be considered as a demonstration

of a principle for real-time electronic control. The control
scheme we apply to HD+ might not offer the same high degree
of controllability as the ones above, neither we shall claim that
this scheme is simpler to implement. The control scheme used
here might, however, be better suited for other molecules. The
implementation on NaI is in progress.28

The paper is organized as follows. In section II we derive
equations of motion directly from the three particle nonrelativ-
istic Schrödinger equation. We separate coordinates in center
of mass, electronic, and nuclear coordinates taking into account
the different mass of the proton and deuteron. We separate out
the rotation and is left with a one-dimensional vector equation
for the motion of the nuclei. In section III we find vibrational
eigenstates, and examine a highly excited vibrational state
showing a oscillating electron distribution. Finally, we show
that the use of an infrared femtosecond pulse fired at the right
time has a controlling influence on the branching ratio. To that
end we vary the pulse width and frequency in order to optimize
the yield and the controllability.

(HD+)* 98
hν {H + D+

H+ + D
(1)
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II. Theory

There are two different choices of the internal coordinates
once the separation from laboratory coordinates to center of
mass coordinates is done. One can use either Jacobi coordinates
where the position of the electron is measured relative to the
center of mass of the nuclei (see, for example, ref 15) or
Geometric coordinates where the position of the electron is
measured relative to the geometrical center of the nuclei (see,
for example, ref 18). The choice of the latter introduces a mass
polarization term whereas the Jacobi coordinates hides the mass
polarization in the potentials and the in the nonadiabatic
coupling. It should be noted that the two coordinate systems
coincide if the nuclei are identical, for example, for H2

+.
Further it should be noted that the choice of coordinate system,
of course, by no means influence the results. We shall in this
paper use the Jacobi coordinates.
A. Separation of Coordinates. The separation of coordi-

nates goes as follows; first we separate out the center of mass
motion, second, focusing on the molecule in the center of mass
frame, we separate the electronic and nuclei motion, and finally
we separate the angular variables. We shall essentially follow
the general three-body derivation by Hunter et al.15 However,
we shall introduce a laser field in the Hamiltonian and further
we shall introduce some simplifications possible only for the
HD+-system. Where our derivation is similar to the derivation
of Hunter et al., we shall indeed be short and only highlight
the conceptually important results.
The total nonrelativistic Hamiltonian in laboratory coordinates

within the electric dipole approximation writes:

where m denotes mass,x denotes position andr denotes
interparticle distance. Subindices p, d, and e denotes proton,
deuteron, and electron respectively.V is the usual Coulomb
potential of the interparticle distances andE(t) is the electric
field. By transforming to Jacobi coordinates, we can separate
out the center of mass motion:

whereM ) mp + md + me. We can hence write the total
Hamiltonian as the sum of a center of mass Hamiltonian:

and a molecular Hamiltonian:

with M-1 ) mp
-1 + md

-1 andm-1 ) (mp + md)-1 + me
-1. We

can hence write the total wave function as a product wave
function:

We now introduce the Born-Huang expansion29 for the
molecular wave function:

With ú ) memd/m(me + md) (see ref 15). Theelectronicwave
functionsæj are chosen as solutions to theelectronicSchrödinger
equation

whereR ) |X|, and whereĤelec is theelectronicHamiltonian

In order to solve this equation we first transformx to a
coordinate system rotating with the nuclei (i.e., withX). We
define the spherical polar coordinates ofX as (R,φ,θ) and rotate
and displacex according to the following transformation:

where (x, y, z) and (x′ y′, z′) are the Cartesian coordinates ofx
andx′, respectively, and whereR ) (md - mp)/(2(md + mp)) =
1/6. Now x′ is centered in the geometrical center of the nuclei
and is rotating with the bond axis.
We now introduce prolate spheroidal coordinates (u, V, ω)

for x′ by ref 30:

These coordinates separate the electronic Schro¨dinger equation,
ref 31:

Where æj ) Υνµλ(u)¥νµλ(V)Ωµ(ω) and where p ) R

x-1/2mWj, and whereC is the separation constant of the two
coupled Sturm-Liouville equations, eqs 12a,b. Theω-equation
is easily solved to giveΩ(ω) ) 1/2πe(iµω. Equations 12a,b are

ψtot(X, x, Ì) ) ψcm(Ì)ψmol(X, x) (6)

ψmol(X, x) ) ú3/2∑
j

æj(úx, úX)øj(X) (7)

Ĥelecæj(x, X) ) Wj(R)æj(x, X) (8)

Ĥelec) - p2

2m
∇x2 + V(X, x) (9)

[x′y′z′ ]) [00RR]+

[-cos(φ) cos(θ) -sin(φ) cos(θ) sin(θ)

sin(φ) -cos(φ) 0

cos(φ) sin(θ) sin(φ) sin(θ) cos(θ) ][xyz] (10)

x′ ) 1/2Rcosωx(u2 - 1)(1- V2) (11a)

y′ ) 1/2Rsinωx(u2 - 1)(1- V2) (11b)

z′ ) 1/2RuV (11c)

∂

∂u
(u2 - 1)

∂Υ
∂u

+ (-C- p2(u2 - 1)-

µ2

u2 - 1
+ 2me2

4πε0p
2
Ru) Υ ) 0 (12a)

∂

∂V
(1- V2) ∂¥

∂V
+ (C- p2(1- V2) - µ2

1- V2) ¥ ) 0 (12b)

∂
2Ω
∂ω2

+ µ2Ω ) 0 (12c)

Ĥtot ) - p2

2mp
∇p2 - p2

2md
∇d2 - p2

2me
∇e2 + V(rpd, rpe, rde) -

eE(t) ‚ (xp + xd - xe) (2)

[XxÌ ]) [-1 1 0

- mp

mp + md
- md

mp + md
1

mp

M

md

M

me

M
][xpxdxe] (3)

Ĥcm ) - p2

2M
∇Ì
2 - eE(t) ‚ Ì (4)

Ĥmol ) - p2

2M
∇X2 - p2

2m
∇x2 + V(X, x) -

eE(t) ‚ [(mme
- 2)x +

mp - md

md + mp
X] (5)
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solved by introducing the infinite series expansions:

whereL andP are associated Laguerre and Legendre polynomi-
als, respectively, ref 30. Inserting eqs 13a,b in eqs 12a,b yields
recurrence relations foran andbl.32 Equations 12a,b are now
solved simultaneously, using 2D-Newton-Raphson iteration for
(C, p).32,33 We start the calculation at small internuclear
separations using the united atom results,R∼ 0;C∼ λ(λ + 1)
andW∼ 22/2mν2 as first guesses. (C, p) for R> 0 is obtained
using the results at smallerR as first guesses.
We shall only be concerned with the two lowest electronic

states, 1sσg and 2pσu. The second excited state and up is at all
internuclear distances of much higher energy than 1sσg and 2pσu
and can hence safely be neglected.
The 1sσg and 2sσu correspond to (ν, µ, λ) equal to (1,0,0)

and (2,0,1), respectively. I.e., we have that the angular
momentum of the electronµ ) 0 and hence the total angular
momentum is equal to the angular momentum of the nuclei.
B. Nuclear Schro1dinger Equation. We shall now con-

sider the nuclear Schro¨dinger equation. We insert the Born-
Huang expansion for the molecular wave function, eq 7,
into the molecular Schro¨dinger equation, multiply by
ú3/2æi(úx, úX)øi(X) and integrate over electronic coordinates.
We obtain

where we, as stressed above, only consider the 1sσg and the
2pσu states (abbreviated to subscripts 1 and 2, respectively) and
used the orthonormality ofæj. T̂ij(R) is the kinetic energy
operator andVij(R) potential energy. Since we are only
considering transitions between states with the same electronic
quantum number (µ ) 0), the off-diagonal in the potential
energy matrix becomes independent of the rotation of the nuclei,
governed by the variablesθ andφ. Dij(R) is the electric dipole
moment operator for a field in the laboratoryz-direction. We
see that the only angular dependence is associated with the
electric dipole moment, and hence when the fieldE(t) is off,
the dimensionality of the problem reduces considerably.
The electronic dipole moment operator can be written as

with

For large internuclear separations one can obtain simple
expressions for the electric dipole moments. These are found
by inserting the asymptotic solutions for the electronic wave-
functions, namely 1s orbitals on the proton and the deuteron.
We find that DM12 ) DM21 f 1 and obtain:

for Rf ∞. However, this limit is valid as a good approximation
in the range from∼2 b to infinity.
An expression for the sumT̂ij + Vij can be found in the

extensive paper of Hunter, Gray, and Pritchard.15 However,
an error herein should be corrected; eq 30 should read (in the
notation of Hunter et al.):

Now for the nuclear wave function,øi(R, θ, φ), we insert in
the nuclear Schro¨dinger equation, eq 14, the sum of products:

whereYlm(θ, φ) are spherical harmonics. We multiply with
Yl′m′(θ, φ) and integrate overθ andφ and finally multiply byR.
We hence get the equation:

where

is a tridiagonal matrix with Al,l-1
m ) Al-1,l

m )

x(l2-m2)/(4l2-1). g(R) andVij(R) can be found in ref 15.
In this paper we shall only consider the rotational ground

state,l ) 0. For a weak field we will only have one-photon
transitions, and we will neglect the addition of one unit of
angular momentum. SinceVjj(R) dominates overp2l(l + 1)/
(2MR2) this approximation is justified. We shall hence label
the scalar states of the vibrational vector state,ø1(R) andø2(R)
omitting thel ) 0 andm ) 0 subscripts.

D11/R) D22/R) -R(1- me/M) = - 1/6 (17a)

D12/R) D21/R) - 1/2(1+ me/M) = - 1/2 (17b)

H(R)ij ) - 1
4
Q(R)ij +

(m2 - 3)δij

4R2
- 1
64
R3[Ee(R)i + Ee

(R)j] ∫ KiKj (λ
4 - µ4)dµdλ - 1

8
R2∫ KiKj(λ

2 + µ2)[λ(q+

1)+ µ(q- 1)]dµdλ - 1
8
R3∫ ∂Ki

∂R

∂Kj

∂R
(λ2 - µ2)dµdλ -

1
8
R2∫ [λ(1- λ2) (∂Ki

∂λ
∂Kj

∂R
+
∂Kj

∂λ
∂Ki

∂R) + µ(µ2 - 1)

(∂Ki

∂µ
∂Kj

∂R
+
∂Kj

∂µ
∂Ki

∂R)] dµdλ (18)

øj(R, θ, φ) )
1

R
∑
l)0

∞

∑
m)-l

l

Ylm(θ, φ)øjlm(R) (19)

ip
d

dt[ø1lm(R)

ø2lm(R) ])

∑
l)0

∞ {-
p2

2M
δll ′ [ d2dR2 - g2 -

l(l+1)

R2
-2g

d

dR
+
dg

dR

2g
d

dR
-
dg

dR

d2

dR2
- g2 -

l(l+1)

R2
]+

δll ′ [V11(R) V12(R)

V21(R) V22(R) ]- eAll ′
mE(t)[D11(R) D12(R)

D21(R) D22(R) ]}[ø1l′m(R)

ø2l′m(R) ]
(20)

All ′
m )∫02π∫0π Ylm(θ, φ) cosθYl′m(θ, φ) sinθ dθ dφ (21)

Υνµλ(u, R) ) e-p(u-1)(p(u- 1))λ∑
n)1

∞

an
νµλ(R)Ln-λ-1

2λ+1 (2p(u- 1))

(13a)

¥νµλ(V, R) ) ∑
l)0

∞

bl
νµλ(R)Pl

µ(V) (13b)

ip
d
dt[ø1(R,θ,φ)

ø2(R,θ,φ) ]) {[T̂11(R) T̂12(R)

T̂21(R) T̂22(R) ]+ [V11(R) V12(R)

V21(R) V22(R) ]-

eE(t)[D11(R) D12(R)

D21(R) D22(R) ]cosθ} [ø1(R,θ,φ)

ø2 (R,θ,φ) ] (14)

Dij(R) ) -[R(1-
me

M) δij + 1
2 (1+

me

M) DM ij(R)]R (15)

DM ij(R) ) ú3R3

8 ∫02π∫-11∫1∞ æi(u, V, ω, úR) ×
æj(u, V, ω, úR)uV(u2 - V2)dudVdω (16)
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We now introduce two new representations: Thediabatic/
and thetrue adiabatic/ representation. In the diabatic repre-
sentation the kinetic energy matrix is diagonal and in the true
adiabatic representation the potential energy matrix is diagonal.
In the representation used so far neither the kinetic nor the
potential energy matrices are diagonal, we label this representa-
tion the adiabatic representation, as it is the one we get
diagonalizing the electronic Hamiltonian. However, due to the
inclusion of the mass polarization term in the treatment (the
mass of the nuclei are not taken to be infinite), we get a small
off diagonal contribution to the potential energy matrix. By
diagonalization of this matrix we obtain the true adiabatic
representation.
A transformation between any of the representations consid-

ered can be performed by the unitary matrix:

whereΘ(R) is chosen to diagonalize either the kinetic or the
potential energy matrix.34 The true adiabatic representation is
unique, whereas the diabatic representation can be rotated
arbitrarily with a constantΘ∞. We shall choose the diabatic
representation that is asymptotic with the two product channels
namely an electron in a 1s-orbital on either the deuteron or on
the proton. This corresponds toø1

D(R) ) 1/x2[ø1(R) + ø2(R)]
andø2

D(R) ) 1/x2[ø1(R) - ø2(R)] whereø j
D(R) is the nuclear

wave function in the diabatic representation. With this choice,
the diabatic and true adiabatic representations coincides in the
asymptotic region. Further the diabatic representation gives a
direct measure of the magnitude of the electron density on the
proton/deuteron, respectively.
The Schro¨dinger equation in the diabatic representation writes:

where Vij
D(R) and Dij

D(R) are the potential energy and the
electric dipole moment transformed into the diabatic representa-
tion. We use the diabatic representation for the computation
as the diagonality of the kinetic energy matrix simplifies the
evaluation of the Hamiltonian considerably.35

The Schro¨dinger equation in the true adiabatic representation
is similar to eq 20 except that the potential energy matrix is
diagonal. In Figure 1, we have plotted the diagonal of the
potential energy matrix which we labelV11

T (R) andV22
T (R); and

furthermore, we have plotted (gT(R))2/2M, again the superscript
“T” denotes the true adiabatic representation. We see that the
coupling term peaks around the avoided crossing at 11.8b and
thatV22

T (R) supports an adiabatic well, a very shallow one that
is.
We shall now examine the electric dipole moments in order

to clarify whether or not it is possible to freeze the electronic
motion in the breaking of the bond. That is, we do not want
the electron to move due to the influence of the field. To that
end, we consider the system in the diabatic representation; here
the two states gives a direct measure of how much of the

electron that is on the proton vs. the deuteron. An approximation
for the electric dipole moments in the diabatic representation
can be calculated from eqs 17a,b and eq 22. We obtain:

These dipole moments are valid in the range from∼ 2 b to
infinity. We see that a (diabatic) electronic transition governed
by D12

D is very unlikely; furthermore, we see that (diabatic)
vibrational transitions can occur, of course, depending on the
vibrational Franck-Condon factors. It should be noted that the
probabilities associated with laser excitation into the translational
continuum states of the two channels, in general, are different.
Thus, the dipole moments differ by a factor of 2, and in addition,
the vibrational Franck-Condon factors can be different (de-
pending on the laser frequency). These findings suggests,
nevertheless, that we should be able to freeze the electronic mo-
tion in the breaking of the bond, and hence control the branch-
ing ratio. That is, the magnitude of the electron density on the
proton vs deuteron before and after the bond is broken can be
unchanged (when the laser parameters are properly chosen).
It should be stressed, that in the calculations done in the

following section, we use the exact dipole moments, and not
the above approximation.

III. Results and Discussion
In this section we shall examine the highly excited vibrational

eigenstates of HD+ to clarify the asymmetric behaviour due to
the different mass of the proton and the deuteron. Further we
shall examine the possibility of controlling the dissociation into
either H+ + D or H + D+.

[cosΘ(R) -sinΘ(R)

sinΘ(R) cosΘ(R) ] (22)

ip
d
dt[ø1

D(R)

ø2
D(R) ]) {- p2

2M[ d2dR2 0

0
d2

dR2
]+ [V11D (R) V12

D (R)

V21
D (R) V22

D (R) ]-

eE(t)[D11
D (R) D12

D (R)

D21
D (R) D22

D (R) ]}[ø1
D(R)

ø2
D(R) ] (23)

Figure 1. The true adiabatic potentials (solid and dashed) and the
coupling (dotted) for HD+ (see text). Near the equilibrium bond
distance, the electron is equally shared between the nuclei and the true
adiabatic and the adiabatic potential are almost identical. In the plot
we have indicated this labeling of the potentials according to the
adiabatic states. In the asymptotic region (magnified by a factor of
100), the true adiabatic potential resembles the two dissociation channels
and is hence labeled accordingly. Note that the adiabatic well is very
shallow and note further the small splitting between the two dissociation
channels H+ + D and H+ D+.

D12
D /R) D21

D /R∼ 0 (24a)

D11
D /R∼ (R - 1/2) -

me

M
(R + 1/2) = 1/3 (24b)

D22
D /R∼ (R + 1/2) -

me

M
(R - 1/2) = - 2/3 (24c)
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A. Vibrational Eigenstates. For l ) 0, HD+ has 23 bound
vibrational eigenstates (see, for example, ref 18); the 22nd
vibrational excited state, however, is bound with only a few
cm-1. We shall hence only consider the first 22 states.
We solve the time-independent Schro¨dinger equation in the

diabatic representation:

whereεn is the energy eigenvalue of then’th vibrational vector
eigenstate,ø j,n

D (R). However, instead of solving eq 25 directly,
we propagate eq 23 withE(t) ) 0 in imaginary time.36 The
computation is performed on two 512 point grids (one for each
scalar state in the vibrational vector state) with a position spacing
of 0.1b. By using the Chebychev propagator37,38(as compared
to the split propagator39,40) we avoid the transform (forward and
back) between the adiabatic and the diabatic representation in
each time step.35

In Figure 2, we have plotted the adiabatic potentials, all
vibrational eigenvalues, the vibrational ground state, and the
21st vibrational excited state. The adiabatic potential for the
electronic ground state and the absolute square of the respective
part of the vibrational eigenstates are in solid, whereas the
adiabatic potential for the excited electronic state and the
absolute square of the respective part of the vibrational
eigenstates are dashed. We see that the 21st vibrational excited
state has a considerable contribution on both electronic states
and is hence asymmetric. (I.e., it is more likely to find the
electron on the deuteron than on the proton). This is more
evident from the electron density which is also plotted in Figure
2. The electron density can be found directly from the
vibrational eigenstates in the adiabatic representation, simply
by integrating out the nuclear coordinates, after transforming
from the diabatic to the adiabatic representation:

We have here suppressed the coordinate dependence for the
electronic and nuclear wave functions. In the following we shall
do likewise where it is unambiguous.
B. Oscillating Electron. We now make a coherent super-

position of the 20st and the 21st vibrationally excited eigenstate.
Since they both show an asymmetric electronic density, we
would expect that in this superposition the electron would
oscillate between the proton and the deuteron. However, the
electron oscillates in such a way that the probability that the
electron is near the proton never exceeds 50%. The preparation
of this state could, for example, be accomplished using a series
of infrared picosecond laser pulses, similar to the preparation
of highly excited vibrational eigenstates by Korolkov et al.41

At t ) 0 the system is prepared in the coherent superposition:

We now follow the dynamics of this state for an entire vibration
periodτ ) 2πp/(ε21 - ε20) ) 393 fs. We display the motion
as four snapshots at timest ) 0, τ/4, τ/2, and 3τ/4. Figure 3
shows the electron density as defined in eq 26, and Figure 4
shows anelectron difference plot, defined as the last term of
the integral in eq 26,∫0∞ Re[æ1ø*1æ2ø2] dRwhich is responsible
for any asymmetric effect in the electron density. Figure 5
shows the expectation value of the internuclear separationR
and the percentage of the electron density near the proton vs.
the deuteron calculated as the percentage of probability on the
diabatic surfaces. From these figures, it is clear that the electron
and the nuclei move on the same time scale. (I.e., as the
molecule vibrates, the electron moves from the proton to the
deuteron and back). This is a clear breakdown of the adiabatic
approximation and suggests that, if we could break the bond at

Figure 2. Adiabatic representation of all vibrational eigenlevels, the
vibrational ground state, and the 21st vibrational excited state. The
potential for the electronic ground state and the absolute square of the
corresponding part of the vibrational eigenstates are in solid and the
potential for the electronic excited state and the absolute square of the
corresponding part of the vibrational eigenstates are dashed. Also
shown is the electron density for the two specific states.

{- p2

2M[ d2dR2 0

0
d2

dR2
]+ [V11D (R) V12

D (R)

V21
D (R) V22

D (R) ]}[ø1,n
D (R)

ø2,n
D (R) ])

εn[ø1,n
D (R)

ø2,n
D (R) ] (25)

P(u, V) ) ∑
i,j)1,2
∫0∞ æi(u, V, R)ø *i (R)æj(u, V, R)øj(R) dR)

∫0∞[æ1ø *1æ1ø1 + æ2ø *2æ2ø2 + 2Re(æ1ø *1æ2ø2)] dR (26)

Figure 3. The oscillating electron density at times 0,1/4, 1/2, and3/4 of
the vibration period. The electron density is defined in eq 26.

Figure 4. Electron difference plot at times 0,1/4, 1/2, and3/4 of the
vibration period. The electron difference shows the electron transfer
as defined in the text.

[ø 1
D(t ) 0)

ø 2
D(t ) 0)])

x2
2 {[ø 1,20

D

ø 2,20
D ]+ [ø 1,21

D

ø 2,21
D ]} (27)
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the right time (without destroying the electron population on
the two nuclei), we should be able to control the branching ratio
between H+ + D and H+ D+. The electron density oscillates
between 38/62% and 22/78% on H/D; however, it should be
noted that, if we could make the wave packet oscillate entirely
through and free from the nonadiabatic coupling, we would
expect a theoretical limit of 50/50% to 0/100% for the electron
density on H/D.
C. Electronic Control. Assume that we at timet ) 0 have

prepared the molecule in the coherent superposition as defined
in eq 27, we now want to dissociate the molecule from this
state using a femtosecond laser pulse. Further we want the time
we fire the pulse to have a controlling influence on the branching
ratio. Dissociation out of highly excited vibrational eigenstates
using infrared picosecond laser pulses has been studied previ-
ously see, for example, ref 41.
We start out with a Gaussian pulse with a duration (full width

at half-maximum, FWHM) of∆t ) 50 fs and a center frequency
ω0 ) 300 cm-1; however, these parameters we shall later vary.
The peak intensity of the field is 160 MW cm-2 corresponding
to a field strength ofE0 ) 35 MV m-1. We fire the pulse so
it reaches its maximum at timesth, from 0 to τ. The electric
field hence takes the form:

The calculation is again performed on two 512 point grids with
a position spacing of 0.1b, using the Lanczos42,43 algorithm
for the time evolution.

We propagate up to timest ) 10 ps before the dissociation
is over and the amount of formed hydrogen and deuterium is
constant. For times that long we would in principle need an
enormous grid to avoid reflection from grid boundaries;
however, instead we use an absorber at the edge of the grid
and add up the flux. We have tried to perform the computation
with several standard absorbers (see, for example, ref 44, 45);
however, they are all dependent on the wave packet being not
too broad in momentum space, or otherwise they will reflect.
The dissociating wave packet formed by the short laser pulse
contains momenta in a large interval and hence a better absorber
was needed. We used a newly derived absorber that automati-
cally adjusts to the actual momentum. All details about this
absorber can be found in ref 46.
In Figure 6, we have plotted the amount of free deuterium

and hydrogen as a function of time when the laser pulse peaks
at t̃ ) τ/2. We see that the amount of free hydrogen becomes
constant quite fast, whereas the amount of free deuterium arrives
in chunks. This is most likely due to the adiabatic well in the
electronic excited potential. It catches some of the wave packet
and it leaks slowly to the electronic ground state potential as it
oscillates back and forth.
The amount of free deuterium and hydrogen relative to the

total yield as a function oft̃ is plotted in Figure 7a for a pulse
width of∆t ) 50 fs. We see that we get the maximum amount
of deuterium whent̃ = 0.6τ and the smallest amount whent̃ =
0.1 τ.
If we compare the amount of deuterium from Figure 7a with

the electron population on the deuteron at given times (in Figure
5) we observe a strong correlation. The maximum/minimum
is not as high as in the bound molecule this we ascribe, partly,
to the fact that we have a finite pulse width.
The influence of the finite pulse width becomes more evident

in Figure 7b, where we have made the same calculation with
∆t ) 100 fs. Here the controllability is almost gone, since the
pulse is averaging over many electronic and nuclear configura-
tions. The overall yield is about the same for∆t ) 50 fs and
∆t ) 100 fs, namely∼7%.
Finally, we have changed the frequency toω0 ) 600 cm-1

and we observe now that the hydrogen channel is favored. This
is due to the Franck-Condon factors for the (diabatic) vibra-
tional transitions; The Franck-Condon factor for a H-channel
vibrational transition is bigger than that of a D-channel
vibrational transition at this frequency. Furthermore, they are

Figure 5. The electron population on the proton and on the deuteron
together with the expectation value of the internuclear separation vs
the time in units of the vibration periodτ. Note that the electron and
the nuclei move on the same time scale (i.e., breakdown of the adiabatic
approximation).

Figure 6. The amount of free deuterium and hydrogen as a function
of time for t̃ ) τ/2. The frequency of the pulse isω ) 300 cm-1. The
dissociation takes place on picosecond scale. Note that the free
deuterium arrives in chunks indicating an oscillating wave packet in
the adiabatic well.

E(t) ) E0 exp[-4 ln 2(t - t̃)2/∆t2] cos[ω0(t - t̃)] (28)

4282 J. Phys. Chem. A, Vol. 102, No. 23, 1998 Gronager and Henriksen



both much smaller than the Franck-Condon factors for theω0

) 300 cm-1 transition resulting in a yield of only 0.5%.

IV. Conclusion
We have presented a new scheme for controlling electron

transfer during the breaking of a chemical bond. The scheme
goes as follows: First we create an oscillating electron in a
molecule, secondly we break the bond with a short IR-laser
pulse at a given time-delay corresponding to the time when the
electron “sits” at the right place. The electronic motion is hereby
freezed and the electron follows the fragment it was located on
just before the bond-breakage.
We have presented, from first principles, the theory for HD+

and have only introduced minor approximations, hence there is
only little or no room for speculations concerning the validity
of the results. We have tested the scheme on HD+ and found
it successful. We saw that we could indeed create an oscillating
electron. By applying the IR-laser pulse we showed that we
could break the bond and hereby freeze the electronic motion
and hence control which fragment the electron should follow.
The degree of controllability is not as high as in other schemes

for electronic control in HD+.23 The optimal control is obtained
when the wave packet oscillates back and forth through the
avoided crossing, such that it is completely free of this region.
For HD+ the oscillating wave packet considered in the present
study is never completely free of the avoided crossing, and hence
the control is not optimal. The control scheme used here might
be better suited for other molecules. The implementation on
NaI is in progress.28
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Figure 7. The percentage of free deuterium and hydrogen as a function
of the time where the laser pulse is fired. The frequency of the pulse
is ω0 ) 300 cm-1 and the pulse width is (a)∆t ) 50 fs and (b)∆t )
100 fs. Note that as the pulse width is increased the controllability is
decreased. The overall yield is about the same for (a) and (b), namely,
∼7%.
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